Green-yellow-red tunable luminescence from Eu³⁺-Ho³⁺-doped TeO₂–GeO₂– Nb₂O₅ glass

YANYAN BU^a, XIANGFU WANG^b, XIAOHONG YAN^{b,*}

^aSchool of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China ^bCollege of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China

 Eu^{3+} -Ho³⁺ doped TeO₂–GeO₂–Nb₂O₅-Li₂CO₃ (TGN) glasses was fabricated by melt-quenching and subsequent heating. Five emissions centered at 548 nm, 613 nm, 652 nm, 700 nm, and 755 nm are observed in the resulting TGN glass under 458 nm excitation, which corresponds to $({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{8}, {}^{5}D_{0} \rightarrow {}^{7}F_{2}, {}^{5}D_{0} \rightarrow {}^{7}F_{3}, {}^{5}D_{0} \rightarrow {}^{7}F_{4}, ({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{7}$ transitions. By adjusting concentration proportion of Ho³⁺ and Eu³⁺ ions, the color coordinate can be converted from green to yellow and eventually to red region. The luminescence decay curves evidenced that the energy transfer from Eu³⁺ to Ho³⁺ was responsible for color-tunable emissions. The Eu³⁺-Ho³⁺ co-doped TGN glasses could be potentially candidate for a white-light-emitting material under blue chip excitation.

(Received January 26, 2013; accepted June 12, 2013)

Keywords: Eu³⁺, Ho³⁺, Energy transfer, White-LED

1. Introduction

In recent years, white light-emitting diodes (W-LED) has attracted much attention owing to its advantages such as long lifetime, lower energy-wasting, high luminous efficiency, environmental protection and so on [1-5]. Combining a GaN-based blue LED with a yellow-emitting (YAG: Ce^{3+}) phosphor was regarded as an efficient and common way to realize W-LED [6-8]. However, the color rendering index (CRI) is low because of the lack of red emitting contribution. In order to improve this problem, many researches were focused on the novel materials which can emit red emission under the blue LED excitations, compensating for red component in yellow-emitting (YAG: Ce^{3+}) phosphors. Nevertheless, chromatic aberrations caused by the different degradations of host phosphors suppress high CRI and re-absorption of emission colors resulting from using two or three different phases of phosphors decrease luminous efficiency [9, 10]. Thus it is necessary to explore a novel single-host material which emits yellow and red emissions simultaneously under blue chip LED excitation.

The trivalent europium Eu³⁺ and the holmium Ho³⁺ have a $4f^6$ and $4f^{10}$ electronic configurations, were reported as excellent emitting activators to realize homochromatic red and green emissions [11-15]. Site selective spectroscopy of Eu³⁺ and Ho³⁺ was observed in Eu³⁺ and Ho³⁺ doped oxyfluoride glass ceramics [16,17]. Red and green emissions were originated from the transitions of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu³⁺) and (${}^{5}S_{2}, {}^{5}F_{4}$) $\rightarrow {}^{5}I_{8}$ (Ho³⁺) under UV excitation. According to tricolor principle, the yellow emissions will be achieved in Eu³⁺-Ho³⁺ co-doped phosphors. Further, the white emission will be obtained by exciting yellow phosphors with a blue chip LED. In this work, Eu³⁺-Ho³⁺ doped TeO₂-GeO₂-Nb₂O₅-Li₂CO₃ (TGN) glasses were fabricated by melt-quenching and subsequent heating, and its photoluminescence excitation, emissions and decay spectra were studied under the 458 nm excitations. As a result, the bright green, red and yellow emissions were observed in Eu^{3+} -Ho³⁺ doped TGN glasses under the 458 nm excitations. Moreover, by adjusting concentration of Ho³⁺ ions, color coordinate converted from green to yellow and eventually to red region, due to the energy transfer from Eu^{3+} to Ho³⁺ and the cross relaxation between Ho³⁺ ions.

2. Experimental

All the chemicals used as received in the synthesis process were not further purified. The raw materials are TeO₂ (99.99%), GeO₂ (99.95%), Nb₂O₅ (99.95%), Li₂CO₃ (AR), EuF₃ (99.99%) and HoF₃ (99.99%). The samples were prepared with the following composition (in mol. %): 70TeO_2 -15GeO₂-10Nb₂O₅-5Li₂CO₃. The single Eu³⁺doped and Ho3+-doped TGN systems were realized by adding the appropriate amount of EuF₃ (0.25, 0.50, 0.75 and 1.0 mol%) and HoF₃ (0.25, 0.50, 0.75, 1.0 and 1.5 mol %), respectively. The Eu³⁺/Ho³⁺ co-doped TGN systems were prepared by changing concentrations from 0.25 to 1.0 mol% the HoF₃ with EuF₃ concentration fixed at 0.75 mol%. The well-mixed stoichiometric chemicals were put into an alumina crucible and melted at 950°C for 0.45 h. The glasses were fabricated by pouring the melt into a brass mold and then annealed at 300°C for 2 h to relinquish the inner stress. The excitation spectra, emission spectra and decay curves were measured on an Edinburgh Instruments FLS920 spectrofluorometer. All the measurements were carried out at room temperature.

3. Results and discussion

The excitation spectra of the TGN: Eu³⁺ monitored at 613 nm and TGN: Ho³⁺ monitored at 548 nm are shown in Fig. 1(a). The excitation spectra of TGN: Eu³⁺ sample consists of two excitation bands centered at 393 nm and 463 nm, which are assigned to the characteristic excitation lines of Eu³⁺, while the excitation spectra of TGN: Ho³⁺ sample shows a very broad excitation band from ultraviolet to blue regions. Obviously, the excitation spectra bands for two trivalent ions in TGN glass exhibit a broad overlap at the blue region (450-470 nm), which is consistent with the strongest emission of GaN-based blue LED chip. Fig. 1(b) presents the emission spectra of the Eu³⁺-doped, Ho³⁺-doped and: Ho³⁺/Eu³⁺ co-doped TGN glasses under 458 nm excitations, respectively. The Eu³⁺-doped TGN glass shows a series of red emission bands, which attribute to ${}^{5}D_{0} \rightarrow {}^{7}F_{0} (579 \text{ nm})$, ${}^{5}D_{0} \rightarrow {}^{7}F_{1} (590 \text{ nm})$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2} (613 \text{ nm})$, ${}^{5}D_{0} \rightarrow {}^{7}F_{3} (652 \text{ nm})$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4} (700 \text{ nm})$ transitions of Eu³⁺ ions [18]. There are three emission bands are observed in Ho³⁺-doped TGN glass, which origin from $({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{8}$ (548 nm), ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ (662 nm) and $({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{7}$ (755 nm) transitions of Ho³⁺ ions, presenting a bright green emission [19]. Moreover, when Eu³⁺ and Ho³⁺ ions are simultaneity doped into TGN glass, the sample exhibits all the above emission bands of the two doped ions, showing a bright yellow emission.

Fig. 1. (a) Excitation spectra of the TGN: $0.75mol\%Eu^{3+}(\lambda_{em}=613nm)$ and TGN: 0.7 mol%Ho³⁺ ($\lambda_{em}=548nm$) glasses; (b) Emissions spectra of the TGN: $0.75mol\%Eu^{3+}$, TGN: 0.75mol% Ho³⁺ and TGN: $0.75mol\%Ho^{3+}/0.75mol\%Eu^{3+}$ glasses under 458 nm excitations. The inset shows the three prepared samples and their photoluminescence photographs under 458 nm excitations.

Furthermore, the effects of Ho³⁺ concentration on emission intensity of Eu³⁺/Ho³⁺ co-doped TGN samples are explored. As shown in Fig. 2, when the Eu^{3+} concentration is fixed at 0.75 mol $\tilde{\%}$, with increasing Ho³⁺ concentration from 0 to 0.75 mol%, the intensities of 613 nm, 652 nm, and 700 nm red emissions of Eu³⁺ ions decrease gradually, which suggests that the energy transfer (ET) between Eu^{3+} and Ho^{3+} ions becomes active with increase of Ho³⁺ concentration. In addition, the intensities of green and red emissions of Ho³⁺ ions firstly increase and then decrease, with a maximum existing at about 0.5 mol%, which suggests that the cross relaxation (CR) process between Ho³⁺ ions becomes active at high Ho³⁻ concentration. The emission spectra for Eu^{3+} -Ho³⁺ doped TGN glass were converted to the Commission International de l'Eclairage (CIE) 1931 chromaticity diagram [11], as plotted in Fig. 3. The CIE chromaticity diagram of Eu^{3+} -Ho³⁺ doped TGN glass shows that the color coordinate can be converted from green to yellow and eventually to red region by adjusting concentration proportion of Eu³⁺ and Ho³⁺ ions. Thus, it is possible to realize the white emission by exciting yellow phosphors with a 458 nm blue chip LED.

Fig. 2. The dependence of luminescence intensity of Eu^{3+} -Ho³⁺ doped TGN glasses on Ho³⁺ concentration under 458 nm excitation.

Fig. 3. 1931-CIE(X,Y) coordinate diagram showing chromaticity points of luminescence for TGN glasses doped with (a) $0.75mol\%Eu^{3+}/0.25mol\%Ho^{3+}$, (b) $0.75mol\%Ho^{3+}$, (c) $0.75mol\%Eu^{3+}/0.50mol\%Ho^{3+}$, (d) $0.75mol\%Eu^{3+}/0.75mol\%Ho^{3+}$, (e) $0.75mol\%Eu^{3+}$.

Room-temperature luminescence decay curves of Eu³⁺: ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (613nm) and $({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{8}$ (548 nm) transitions in Eu³⁺-Ho³⁺ doped TGN glasses are shown in Fig. 4. Because of the nonexponential nature of these curves, the decay time value τ can be obtained by fitting the exponential data by the following equation

$$F = A + B_1 exp(-t/T_1) + B_2 exp(-t/T_2), \quad (1)$$

$$\tau = \Sigma(\text{Ti*Rel\%}), \tag{2}$$

where F is the instantaneous intensity of sample, A is the dark current of the detectors, B₁ and B₂ is weight factors for a certain system, t is the time, Rel% is contribution percentage of the different luminescence, τ is decay time value. The decay time values of 613 nm red emission are 878.71 μ s and 644.18 μ s for the TGN: 0.75mol%Eu³⁺ and the TGN: $0.75 \text{mol}\% \text{Eu}^{3+}/0.75 \text{mol}\% \text{Ho}^{3+}$ samples. The decay time values of 548 nm green emission are 5.98 µs and 6.56 μ s for the TGN: 0.75mol%Ho³⁺ and the TGN: 0.75mol%Eu³⁺/0.75mol%Ho³⁺ samples. It is obviously that, after Ho^{3+} is doped, the decay time values of 613 nm red emissions decrease, while the decay time values of 548 nm red emissions increase. These results suggest that the energy transfer from Eu^{3+} to Ho^{3+} ions occurs, and the red emission levels ${}^{5}D_{2}$ and ${}^{5}D_{1}$ of Eu^{3+}_{2} acts as energy donors, while the green emission level $({}^{5}S_{2}, {}^{5}F_{4})$ of Ho³⁺ acts as energy acceptor.

Fig. 4. Room-temperature luminescence decay curves under 458 nm excitation in TGN glasses doped with (a) $0.75 \text{ mol}\%Eu^{3+}$, (b) $0.75 \text{ mol}\%Eu^{3+}/0.75 \text{ mol}\%Ho^{3+}$, (c) $0.75 \text{ mol}\%Ho^{3+}$, (d) $0.75 \text{ mol}\%Eu^{3+}/0.75 \text{ mol}\%Ho^{3+}$.

The energy transfer between Ho^{3+} and Eu^{3+} was discussed in calibo glass under UV excitation [20]. Energy transfer between Eu^{2+} and Ho^{3+} ions was observed in CaF_2 crystals under 5512 Å excitation [21]. Basing on the energy levels of Ho^{3+} and Eu^{3+} ion, the energy transfer and cross relaxation process are schematically illustrated in Fig.

5. Under 458 nm excitation, Ho^{3+} and Eu^{3+} ions are excited directly to the higher excited states ${}^{5}\text{F}_{2}$ and ${}^{5}\text{D}_{2}$ respectively, then relax to next energy level through nonradiative relaxations. The green, yellow, and red emissions are produced by the radiative transitions from ${}^{5}\text{D}_{0}$ to ${}^{7}\text{Fn}$ (n = 0, 1, 2, 3, 4) transitions of Eu^{3+} and from $({}^{5}\text{S}_{2}, {}^{5}\text{F}_{4}) \rightarrow {}^{5}\text{I}_{8}$, ${}^{5}\text{F}_{5} \rightarrow {}^{5}\text{I}_{8}$ and $({}^{5}\text{S}_{2}, {}^{5}\text{F}_{4}) \rightarrow {}^{5}\text{I}_{7}$ (755 nm) transitions of Ho^{3+} . According to the Miyakawa–Dexter theory [22, 23], the probability of phonon-assisted energy transfer is expressed as

$$W_{ET} = W_{ET} (0) \exp (-\beta \Delta E), \qquad (3)$$

where ΔE is an energy gap between the energy levels of the donor and acceptor, $W_{ET}(0)$ is the transfer rate when $\Delta E = 0$, and β is a function of effective phonon energy and electron-phonon coupling strength. The equation implies that the smaller the energy gap is, the faster the energy transfer occurs; the larger energy mismatch is, the smaller the energy transfer probability will be. When the Ho^{3+} ions was doped into TGN: Eu³⁺ samples, according to small energy gap between ${}^{5}D_{1}$ (Eu³⁺) and ${}^{5}S_{2}$, ${}^{5}F_{4}$ (Ho³⁺) levels, the ET process: ${}^{5}D_{1}(Eu^{3+}) \rightarrow {}^{5}S_{2}, {}^{5}F_{4}(Ho^{3+})$ is easy to carry out, resulting in the decrease of red emission and the increase of green emission, as shown in Fig.2. However, with the increase of Ho³⁺ concentration, the cross-relaxation process: $({}^{5}S_{2}, {}^{5}F_{4}) + {}^{5}I_{8} \rightarrow {}^{5}I_{6} + {}^{5}I_{6}$ between Ho³⁺ ions become active, leading to the quenching of green and red emissions of Ho^{3+} ions [19].

Fig. 5. Energy transfer between Eu^{3+} *and* Ho^{3+} *ions under 458 nm excitation.*

4. Conclusions

 Eu^{3+} and Ho^{3+} doped TGN glasses were fabricated by melt-quenching and subsequent heating. The green and red emissions were observed in the Eu^{3+} and Ho^{3+} doped TGN glasses under 458 nm excitation, and the color-tunable green, yellow and red emissions were achieved by controlling concentration proportion of Eu^{3+} and Ho^{3+} ions. The energy transfer from Eu^{3+} to Ho^{3+} ions was responsible for color-tunable emissions. The Eu^{3+}/Ho^{3+} co-doped TGN glass could be used as a white-light-emitting material under blue chip excitation.

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC51032002), the key Project of the National High Technology Research and Development Program ("863"Program) of China (No.2011AA050526), the Science and Technology Support Plan of Jiangsu Province (BE2011191).

References

- T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Nat. Mater. 6, 568 (2007).
- [2] C. C. Tu, Q. F. Zhang, Lih Y. Lin, G. Z. Cao, Opt. Express. 20, A69 (2012).
- [3] D. Q. Chen, Y. L. Yu, P. Huang, H. Lin, Z.F. Shan, Y. S. Wang, Act. Mater. 58, 3035 (2010).
- [4] J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, D. W. Kim, S. B. Song, Opt. Mater. 34, 1614 (2012).
- [5] M. Y. Peng, L. Wondraczek, Opt. Lett. 35, 2544 (2010).
- [6] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
- [7] Y. H. Song, G. Jia, M. Yang, Y.J. Huang, H. P. You,
 H. J. Zhang, Appl. Phys. Lett. 94, 091902 (2009).

- [8] Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, J. S. Lee, Appl. Phys. Lett. 89, 231909 (2006).
- [9] W. J. Yang, T. M. Chen, Appl. Phys. Lett. 90, 171908 (2007).
- [10] J. S. Kim, P. E. Jeon, J.C. Choi, H. L. Park, S. I. Mho, G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004).
- [11] D. Q. Chen, Y. L. Yu, P. Huang, H. Lin, Z. F. Shan, Y. S. Wang, Acta. Mater. 58, 3035-3041 (2010).
- [12] K. Y. Jung, H. W. Lee, H. K. Jung, Chem. Mater. 18, 2249 (2006).
- [13] X. Qin, T. Yokomori, Y. G. Ju, Appl. Phys. Lett. 90, 073104 (2007).
- [14] P. K. Sharma, R. K. Dutta, A. C. Pandey, Opt. Lett. 35, 2331 (2010).
- [15] H. Desirena, E. D. L. Rosa, P. Salas, O. Meza, J. Phys. D: Appl. Phys. 44, 455308 (2011).
- [16] J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, P. Núñez, J. Appl. Phys. 94, 2295 (2003).
- [17] V. D. Rodríguez, V. Lavín, U. R. Rodriguez mendoza, I. R. Martín, P. Nuítez, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, **135**, (1995)
- [18] F. B. Cao, L. S. Li, Z. J. Wu, X. R. Wu, J. H. Zhu, W. M. Liu, J. Display Technol. 8, 127 (2012).
- [19] Y. Q. Sheng, L. L. Xu, J. Liu, D. Zhai, Z.G. Zhang, J. Lumin. 130, 338 (2010).
- [20] H. B. Tripathi, H. C. Kandpal, A. K. Agarwal, R. Belwal, Chem. Phys. Lett., 57, 50 (1978).
- [21] T. F. Ewanizky, J. Appl. Phys. 38, 4338 (1967).
- [22] J. Qiu, M. Shojiya, Y. Kawamoto, J. Appl. Phys. 86, 909 (1999).
- [23] T. Miyakawa, D. L. Dexter, Phys. Rev. B. 1, 2961 (1970).

Corresponding author: buyy@njupt.edu.cn yanxh@njupt.edu.cn